Abstract
Cultured rat microglia produced extracellular superoxide at a rate of 814 +/- 52 pmol/min/million cells when stimulated with phorbol 12-myristate 13-acetate (PMA) as measured by extracellular cytochrome c reduction. This superoxide production resulted in a rapid rate of superoxide dismutase-sensitive nitric oxide (NO) breakdown (155 +/- 30 pmol of NO/min/million cells) when NO was added to PMA stimulated microglia. Lipopolysaccharide/interferon-gamma (LPS/IFN-gamma)-activated microglia produce NO at the rate of 145 +/- 42 pmol/min/million cells and activated astrocytes at the rate of 51 +/- 9 pmol/min/million cells as estimated by NO electrode. Both types of cells maintained a steady-state level of 0.5-0.7 microm NO, only in the presence of L-arginine. Addition of PMA to activated microglia (but not activated astrocytes) caused the rapid and complete disappearance of all extracellular NO (but was restored in the presence of superoxide dismutase) followed by the production of peroxynitrite (as measured by urate-sensitive oxidation of dihydrorhodamine). Co-incubation of activated microglia with cerebellar granule neurones resulted in NO inhibition of neuronal respiration, but this was rapidly removed by PMA-induced breakdown of the NO. Thus, microglial NADPH oxidase can regulate the bioavailability of NO and the production of peroxynitrite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.