Abstract

The regulation of the LDL receptor activity in the human hepatoma cell line Hep G2 was studied. In Hep G2 cells, in contrast with fibroblasts, the LDL receptor activity was increased 2.5-fold upon increasing the concentration of normal whole serum in the culture medium from 20 to 100% by volume. Incubation of the Hep G2 cells with physiological concentrations of LDL (up to 700 μg/ml) instead of incubation under serum-free conditions resulted in a maximum 2-fold decrease in LDL receptor activity (10-fold decrease in fibroblasts). Incubation with physiological concentrations of HDL with a density of between 1.16 and 1.20 g/ml (heavy HDL) resulted in an approximately 7-fold increase in LDL receptor activity (1.5-fold increase in fibroblasts). This increased LDL receptor activity is due to an increase in the number of LDL receptors. Furthermore, simultaneous incubation of Hep G2 cells with LDL and heavy HDL (both 200 μg/ml) resulted in a 3-fold stimulation of the LDL receptor activity as compared with incubation in serum-free medium. 3-Hydroxy-3-methylglutaryl-CoA reductase activity was also stimulated after incubation of Hep G2 with heavy HDL (up to 3-fold). The increased LDL receptor activity in Hep G2 cells after incubation with heavy HDL was independent of the action of lecithin: cholesterol acyltransferase during that incubation. However, previous modification of heavy HDL by lecithin: cholesterol acyltransferase resulted in an enhanced ability of heavy HDL to stimulate the LDL receptor activity. Our results indicate that in Hep G2 cells the heavy HDL-mediated stimulation of the LDL receptor activity overrules the LDL-mediated down-regulation and raises the suggestion that in man the presence of heavy HDL and the action of lecithin: cholesterol acyltransferase in plasma may be of importance in receptor-mediated catabolism of LDL by the liver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call