Abstract

Neutrophil extracellular traps (NETs) play a critical role in host antimicrobial response whereas they are also implicated in the pathogenesis of inflammatory and autoimmunediseases. Generation of reactiveoxygen species (ROS) is key to NETs formation. A variety of stimulatory ligands have been found to enhance ROS production and thus trigger NETs. However, the mechanisms that connect receptor stimuli with ROS production and NETs formation remain unclear. In this study, we described a new mechanism of NETs generation in neutrophils triggered by stimulation of the class A scavenger receptor (SRA), a major subtype of scavenger receptors in response to various stimuli during infection and inflammatory disorders. By using polyinosinic acid (Poly I), a ribonucleotide ligand of SRA, we demonstrated that SRA stimulation lead to selective ERK phosphorylation, which upregulated cytosol ROS levels and induced canonical NETs formation by activating NADPH oxidase 2 (NOX2). Interestingly, our results showed that mitochondrial ROS (mtROS) production was also enhanced by the SRA dependent ERK activation through upregulation and activation of reactive oxygen species modulator 1(ROMO1), a mitochondrial membrane protein and a key mediator of mtROS. Moreover, inhibition of the SRA elicited ROMO1 activation dampened NETs release upon SRA stimulation. Overall, our study describes a new insight into the NETs release triggered by membrane SRA stimulation and mediated by ERK dependent NOX2 and ROMO1 activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.