Abstract
Neuronal loss is a key component of fetal alcohol syndrome pathophysiology. Therefore, identification of molecules and signaling pathways that ameliorate alcohol-induced neuronal death is important. We have previously reported that neuronal nitric oxide synthase (nNOS) can protect developing cerebellar granule neurons (CGN) against alcohol-induced death both in vitro and in vivo. However, the upstream signal controlling nNOS expression in CGN is unknown. Activated cAMP response element binding protein (CREB) has been strongly linked to the survival of multiple cell types, including CGN. Furthermore, the promoter of the nNOS gene contains two cAMP response elements (CRE). Using cultures of CGN, we tested the hypothesis that cAMP mediates nNOS activation and the protective effect of nNOS against alcohol-induced cell death. Forskolin, an activator of the cAMP pathway, stimulated expression of a reporter gene under the control of the nNOS promoter, and this stimulation was substantially reduced when the two CREs were mutated. Forskolin increased nNOS mRNA levels several fold, increased production of nitric oxide, and abolished alcohol's toxic effect in wild type CGN. Furthermore, forskolin's protective effect was substantially reduced in CGN cultures genetically deficient for nNOS (from nNOS−/− mice). Delivery of nNOS cDNA using a replication-deficient adenoviral vector into nNOS−/− CGN abolished alcohol-induced neuronal death. In addition, overexpression of nNOS in wild type CGN ameliorated alcohol-induced cell death. These results indicate that the neuroprotective effect of the cAMP pathway is mediated, in part, by the pathway's downstream target, the nNOS gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.