Abstract

The human immunodeficiency virus type-1 (HIV-1) long terminal repeat (LTR) initiates transcription efficiently but produces only short transcripts in the absence of the trans-activator protein, Tat. To determine whether a cellular enhancer could provide the signals required to recruit an elongation-competent polymerase to the HIV-1 LTR, the B cell-specific immunoglobulin heavy chain gene enhancer (IgHE) was inserted upstream of the LTR. The enhancer increased transcription in the absence of Tat between 6- and 7-fold in transfected B cells, but the full-length transcripts remained at basal levels in HeLa cells, where the enhancer is inactive. RNase-protection studies showed that initiation levels in the presence and absence of the enhancer were constant, but the enhancer significantly increased the elongation capacity of the polymerases. Tat-stimulated elongation is strongly inhibited by the nucleoside analogue 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), which inhibits the Tat-associated kinase, TAK (CDK9). However, polymerases initiating transcription from LTRs carrying the enhancer were able to efficiently elongate in the presence of DRB. Specific repression of TAK by expression in trans of the CDK9 kinase also inhibited Tat-stimulated elongation but did not inhibit enhancer-dependent transcription significantly. Thus, the activation of polymerase processivity by the IgHE involves a unique mechanism which is independent of TAK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call