Abstract

The noradrenaline-adrenergic system has a crucial role in controlling nociceptive transduction at the spinal level. While α-adrenergic receptors are known to regulate nociceptive neurotransmitter release at the spinal presynaptic level, it is not entirely clear whether β-adrenergic receptors are involved in controlling pain transduction at the spinal level as well. The current study elucidated a role of β-adrenergic receptors in neuropathic pain in mice following a partial sciatic nerve ligation (PSNL). In addition, the cellular and intracellular signaling cascade induced by β-adrenergic receptors in neuropathic mice was elaborated. Intrathecal injection of isoproterenol (1 nmol), a nonselective β-adrenergic receptor agonist, briefly ameliorated hind paw mechanical hypersensitivity of PSNL mice. Isoproterenol's antinociceptive effect was mediated through β2-adrenergic receptors since pretreatment with ICI118551, a selective β2-adrenergic receptor antagonist, but not with CGP20712A, a selective β1-adrenergic receptor antagonist, significantly attenuated isoproterenol's effect. Furthermore, intrathecal treatment with a selective β2-adrenergic receptor agonist, terbutaline, but not a selective β1-adrenergic receptor agonist, dobutamine, also significantly ameliorated neuropathic pain. Fourteen days after PSNL, increased phosphorylation of both p38 Mitogen-activated protein kinase (MAPK) in microglia and c-jun N-terminal kinase (JNK) in astrocytes of ipsilateral spinal dorsal horn were observed. Phosphorylation of both microglial p38 MAPK and astrocytic JNK were downregulated by stimulation of the β2-adrenergic receptor. Together, these results suggest that spinal β2-adrenergic receptor have an inhibitory role in neuropathic nociceptive transduction at the spinal level through a downregulation of glial activity, perhaps through modulation of MAP kinases phosphorylation. Thus, targeting of β2-adrenergic receptors could be an effective therapeutic strategy in treating neuropathic pain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call