Abstract

The testicular paracrine factor PModS is produced by peritubular myoid cells under androgen control and modulates Sertoli cell function and differentiation. The observation that luteinizing hormone (LH) stimulates inhibin production in vivo, but has no effect on isolated Sertoli cells in vitro, suggested an indirect mode of LH action, potentially mediated by PModS. The effects of the testicular paracrine factor PModS and hormones on inhibin secretion by Sertoli cells were investigated to provide insight into the endocrine control of inhibin expression. An inhibin radioimmunoassay was utilized which showed essentially parallel displacement curves with purified bovine follicular fluid inhibin, Sertoli cell conditioned medium and concentrated Sertoli cell secreted proteins. An immunoblot analysis of Sertoli cell secreted proteins with the inhibin antisera consistently detected a 32 kDa protein which is the expected size of the mature of inhibin (αβ) and periodically detected a 57 kDa protein which is speculated to be an incomplete processed form of the inhibin precursor ( α 43 β). Follicle-stimulating hormone (FSH) was found to stimulate inhibin secretion initially between days 2 and 5 of Sertoli cell culture. Insulin and retinol alone had no significant effect on inhibin secretion; however, together they appeared to enhance the ability of FSH to stimulate inhibin secretion. Testosterone had no effect on inhibin production alone or in combination with other regulatory agents. PModS was found to stimulate inhibin secretion approximately 3-fold, but with a delayed time course of stimulation which did not occur until days 5–7 of Sertoli cell culture. Treatment with a combination of PModS and FSH resulted in an apparent maximal stimulation of inhibin secretion. Both forms of PModS, PModS (A) and PModS (B), were found to have equivalent biological activities in their ability to stimulate inhibin production with an apparent half-maximal effective concentration between 10 and 15 ng/ml. The current study provides evidence for the local testicular control of inhibin production and adds to the complexity of the endocrine control of inhibin expression. The cellular interaction is proposed in which LH acts on Leydig cells to stimulate androgen production which in turn acts on peritubular cells to regulate PModS production which subsequently can act on Sertoli cells to control inhibin production. Testicular control of inhibin production provides a potential short feedback loop for the local regulation of androgen production and an additional regulatory element for the pituitary-gonadal axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.