Abstract

A new method of stimulating secondary negative ion emission is suggested that is based on implantation of alkaline ions into the surface layer of a solid with subsequent heating to a temperature providing optimal coverage of the surface (about half a monolayer) by activator (alkaline) ions. It is shown that, by appropriately selecting the implantation dose (1018–1019 cm−3) and surface temperature (500–900°C), one can reach such a degree of coverage of the sample surface by activator ions that its work function eφ becomes minimal: 1.9 eV for molybdenum and 2.1 eV for copper. It is found that, with the implantation (irradiation) dose and surface temperature chosen properly, one can, by means of outdiffusion of cesium atoms, achieve such a degree of surface coverage that remains unchanged during the continuous sputtering of the surface by a cesium ion beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.