Abstract

Octahedrally coordinated cobalt(II) complexes with a redox‐active bisguanidine ligand and acac co‐ligands were synthesized and their redox chemistry analysed in detail. The N−H functions in a bisguanidine ligand with partially alkylated guanidino groups form N−H⋅⋅⋅O hydrogen bonds with the acac co‐ligands, thereby massively influencing the redox chemistry. For all complexes, the first one‐electron oxidation is metal‐centred, leading to CoIII complexes with neutral bisguanidine ligand units. Further one‐electron oxidation is ligand‐centred in the case of Co–bisguanidine complexes with fully alkylated guanidino groups, giving CoIII complexes with radical monocationic bisguanidine ligands. On the other hand, the hydrogen‐bond strengthening upon oxidation of the Co–bisguanidine complex with partially alkylated guanidino groups initiates metal reduction (CoIII→CoII) and two‐electron oxidation of the guanidine ligand, providing the first example for the stimulation of redox‐induced electron transfer by interligand hydrogen bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.