Abstract

Cell-free synovial fluid from patients with rheumatoid arthritis contains soluble and insoluble IgG-containing immune complexes which activate reactive oxidant production in human neutrophils. In this report we have measured the effects of inhibitors of signal transduction pathways on neutrophil activation by these complexes and also following activation by synthetic soluble and insoluble immune complexes made from human serum albumin (HSA) and anti-(HSA) antibodies. In all aspects studied, the soluble rheumatoid complexes and the soluble synthetic complexes were indistinguishable in the ways in which they activated neutrophils. Activation of reactive oxidant production in response to these soluble complexes was completely inhibited by pertussis toxin (indicating G-protein coupling of receptor occupancy), completely insensitive to staurosporine (indicating that oxidant production did not require protein kinase C activity), only marginally (< 30%) inhibited by butanol (indicating that dependence upon activity of phospholipase D was minimal), and completely inhibited by chloracysine, an inhibitor of phospholipase A2. In contrast, activation of reactive oxidant production in response to the insoluble rheumatoid or insoluble synthetic immune complexes was largely pertussis toxin insensitive, inhibited by > 50% by staurosporine, inhibited by > 50% by butanol, and completely inhibited by chloracysine. These results show that the receptor-mediated signal transduction systems activated by the soluble and insoluble immune complexes are different. Because the soluble complexes activate a transient burst of reactive oxidant secretion from primed neutrophils, the mechanisms regulating either the release or the intracellular production of oxidants within rheumatoid joints are distinct and hence may be pharmacologically modified independently of each other.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.