Abstract
Treatment of confluent Swiss 3T3 cells in serum-free medium with colchicine, a drug known to depolymerize microtubules, results in a dose-dependent increase in both released and cell-associated plasminogen activator levels. Other anti-microtubule drugs (vinblastine and nocodazole) are also active in stimulating plasminogen activator expression. In contrast, cytochalasin B, a microfilament-disruptive drug, has no effect. In addition, treatment with colchicine, vinblastine or nocodazole, but not cytochalasin B, also results in a dose-dependent induction of DNA synthesis in both confluent and quiescent sparse 3T3 cells in the absence of serum. Furthermore, colchicine treatment also mediates a marked morphologic change. Thus, disruption of microtubules may be sufficient to render 3T3 cells in an “activated” state characterized by morphologic alteration, enhanced plasminogen activator expression and induction of DNA synthesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.