Abstract

The proliferative capacity of mouse connective tissue-type mast cells (CTMC) was analyzed by using a newly discovered c-kit ligand, termed stem cell factor (SCF). More than 90% of CTMC in the peritoneal cavity responded to recombinant rat SCF (rrSCF) and were able to give rise to pure mast cell colonies in methylcellulose culture. Serial observation (mapping) of growth of individual CTMC in culture containing rrSCF confirmed their striking proliferative ability. No serum but accessory cells (non-CTMC cells) in the peritoneal population were required for the clonal growth of CTMC induced by rrSCF in our methylcellulose culture of whole peritoneal cells. The rrSCF-induced mast cell colony formation from peritoneal CTMC was completely inhibited by the addition of anti-c-kit antibody, which can block the binding of SCF to c-kit, to the culture. When IL-3 was combined with rrSCF, mast cell colonies dramatically increased in size. Mapping studies revealed that the combination of the two factors augmented the proliferative rate of CTMC. Approximately 60% of the constituent cells of the mast cell colonies which were formed from peritoneal CTMC in the culture containing rrSCF alone were stained with berberine sulfate, which is a characteristic of CTMC. However, most mast cells which were induced by rrSCF+IL-3 from peritoneal CTMC contained berberine(-)-safranin(-)-Alcian blue(+) granules. Although IL-4 exhibited little synergism with rrSCF in the induction of CTMC proliferation, the addition of IL-4 to the culture containing rrSCF+IL-3 resulted in an increase in mast cells which retained CTMC characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.