Abstract

Huge amounts of wastewater that contain aromatic compounds such as benzene and phenols are discharged worldwide. Benzoate is a typical intermediate in the anaerobic transformation of those aromatic compounds. In this study, electrically conductive carbon-based materials of granulated activated carbon (GAC), multiwalled carbon nanotubes (MwCNTs), and graphite were evaluated for the ability to promote the benzoate degradation. The results showed that 82–93% of the electrons were recovered in CH4 production from benzoate. The carbon materials stimulated benzoate degradation in the sequence of GAC (5 g/L) > MwCNTs (1 g/L) ~ Graphite (0.1 g/L) > Control. Acetate was the only detected intermediate in the process of benzoate degradation. Taxonomic analyses revealed that benzoate was degraded by Syntrophus to acetate and H2, which were subsequently converted to methane by Methanosarcina (both acetoclastic methanogens and hydrogenotrophic methanogens) and Methanoculleus (hydrogenotrophic methanogens), and direct interspecies electron transfer (DIET) of Desulfovibrio and Methanosarcina. Thus, these results suggest a method to effectively enhance the removal of aromatic compounds and methane recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.