Abstract
Previous studies demonstrated that liver X receptor (LXR) agonists inhibit human immunodeficiency virus (HIV) replication by upregulating cholesterol transporter ATP-binding cassette A1 (ABCA1), suppressing HIV production, and reducing infectivity of produced virions. In this study, we extended these observations by analyzing the effect of the LXR agonist T0901317 [N-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl]-N-(2,2,2-trifluoroethyl)benzenesulfonamide] on the ongoing HIV infection and investigating the possibility of using LXR agonist for pre-exposure prophylaxis of HIV infection in a humanized mouse model. Pre-exposure of monocyte-derived macrophages to T0901317 reduced susceptibility of these cells to HIV infection in vitro. This protective effect lasted for up to 4 days after treatment termination and correlated with upregulated expression of ABCA1, reduced abundance of lipid rafts, and reduced fusion of the cells with HIV. Pre-exposure of peripheral blood leukocytes to T0901317 provided only a short-term protection against HIV infection. Treatment of HIV-exposed humanized mice with LXR agonist starting 2 weeks postinfection substantially reduced viral load. When eight humanized mice were pretreated with LXR agonist prior to HIV infection, five animals were protected from infection, two had viral load at the limit of detection, and one had viral load significantly reduced relative to mock-treated controls. T0901317 pretreatment also reduced HIV-induced dyslipidemia in infected mice. In conclusion, these results reveal a novel link between LXR stimulation and cell resistance to HIV infection and suggest that LXR agonists may be good candidates for development as anti-HIV agents, in particular for pre-exposure prophylaxis of HIV infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of pharmacology and experimental therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.