Abstract

Rubber particles isolated from guayule (Parthenium argentatum Gray) stem homogenates contain a polyprenyl transferase which catalyzes the polymerization of isopentenyl pyrophosphate into polyisoprene. The polymerization reaction is stimulated with the addition of an allylic pyrophosphate initiator and forms a polymer of polyisoprene with a molecular weight distribution from 10(3) to 10(7). The polymerization reaction in crude stem homogenates is not affected by the addition of an initiator probably due to the high activity of isopentenyl pyrophosphate isomerase furnishing saturating levels of dimethylallyl pyrophosphate. Polyisoprene formation in stems of guayule plants exposed to cold winter temperatures increased from 15.4 milligrams per gram dry weight in October to 24.5 milligrams per gram dry weight in January and increased from 16.2 to 38.1 milligrams per gram dry weight in the same period by additionally treating the plants with 5000 ppm of 2-(3,4-dichlorophenoxy)triethylamine. The rate of polymerization of isopentenyl pyrophosphate into polyisoprene in stem homogenates of the cold treated plants increased from 12.1 nanomoles per hour per gram fresh weight in October to 144.3 nanomoles per hour per gram fresh weight in January and increased from 17.7 to 446.8 nanomoles per hour per gram fresh weight in the same period by additionally treating the plants with 5000 ppm of 2-(3,4-dichlorophenoxy)triethylamine. These results show that the increase in polyprenyl transferase activity partially accounts for the increase in polyisoprene synthesis in guayule plants exposed to low temperature and treated with 2-(3,4-dichlorophenoxy)triethylamine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call