Abstract
This study was undertaken to investigate whether the mechanism of increased Na(+)-K(+)-2Cl(-) (NKCC1) cotransporter activity by osmotic shrinkage involved AMP-activated protein kinase (AMPK) activation. AMPK was found to phosphorylate a recombinant GST-dogfish (1-260) NKCC1 fragment at Ser38 and Ser214, corresponding to Ser77 and Ser242 in human NKCC1, respectively. Incubation of human erythrocytes with 20 microM A769662 AMPK activator increased Ser242 NKCC1 phosphorylation but did not stimulate (86)Rb(+) uptake. Under hypertonic conditions in human red blood cells (RBCs) incubated with 0.3 M sucrose, NKCC1 activity increased as measured by bumetanide-sensitive (86)Rb(+) uptake and AMPK was activated. However, there was no effect of AMPKalpha1 deletion in mouse RBCs on the increased rate of (86)Rb(+) uptake induced by hyperosmolarity. AMPK activation by osmotic shrinkage of mouse RBCs was abrogated by 10 microM STO-609 CaMKKbeta inhibitor, but incubation with STO-609 did not affect the increase in (86)Rb(+) uptake induced by hyperosmolarity. Osmotic shrinkage of human and mouse RBCs led to activation loop phosphorylation of the STE20/SPS1-related proline/alanine-rich kinase (SPAK) at Thr233, which was accompanied by phosphorylation of NKCC1 at Thr203/207/212, one of which (Thr207) is responsible for cotransporter activation. Therefore, phosphorylation-induced activation of NKCC1 by osmotic shrinkage does not involve AMPK and is likely to be due to SPAK activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.