Abstract

The trace elements such as iron are vital for various enzyme activities and for other cellular proteins, but iron toxicity causes the production of reactive oxygen species (ROS) that causes alterations in morphology and function of the nephron. The present study was designed to determine the effect of long-term iron overload on the renal antioxidant system and to determine any possible correlation between enzymatic and molecular levels. Our data showed that reduced glutathione (GSH) levels, which is a marker for oxidative stress, strikingly decreased with a long-term iron overload in rat kidney. While renal mRNA levels of glucose 6-phosphate dehydrogenase (G6pd), 6-phosphogluconate dehydrogenase (6pgd) and glutathione peroxidase (Gpx) were significantly affected in the presence of ferric iron, no changes were seen for glutathione reductase (Gsr) and glutathione S-transferases (Gst). While the iron affected the enzymatic activity of G6PD, GSR, GST, and GPX, it had no significant effect on 6PGD activity in the rat kidney. In conclusion, we reported here that the gene expression of G6pd, 6pgd, Gsr, Gpx, and Gst did not correlate to enzyme activity, and the actual effect of long-term iron overload on renal antioxidant system is observed at protein level. Furthermore, the influence of iron on the renal antioxidant system is different from its effect on the hepatic antioxidant system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.