Abstract
This study investigated how modulation of intracellular calcium alters the functional activity of the EAAC1 glutamate transporter in C6 glioma cells. Pre-incubation of C6 glioma cells with the endoplasmic reticulum Ca 2+ ATP pump inhibitor, thapsigargin (10 μM) produced a time-dependent increase in the V max for d-[ 3H]aspartate transport that reached a maximum at 15 min (143% of control; P < 0.001) that was accompanied by increased plasma membrane expression of EAAC1 and was blocked by inhibition of protein kinase C. Pre-incubation of C6 glioma cells with phorbol myristate-3-acetate (100 nM for 20 min) also caused a significant increase in the V max of sodium-dependent d-[ 3H]aspartate transport (190% of control; P < 0.01). In contrast, in the absence of extracellular calcium, thapsigargin caused a significant inhibition in d-[ 3H]aspartate transport that was not mediated by protein kinase C. Blockade of store-operated calcium channels with 2-aminoethoxydiphenyl borate (50 μM) or SKF 96365 (10 μM) caused a net inhibition of d-[ 3H]aspartate uptake. Co-incubation of C6 glioma cells with both thapsigargin and 2-aminoethoxydiphenyl borate (but not SKF 96365) prevented the increase in d-[ 3H]aspartate transport that was observed in the presence of thapsigargin alone. Furthermore, 2-aminoethoxydiphenyl borate, but not SKF 96365, reduced the increase in intracellular calcium that occurred following pre-incubation of the cells with thapsigargin. It is concluded that, in C6 glioma cells, stimulation of EAAC1-mediated glutamate transport by thapsigargin is dependent on entry of calcium via the NSCC-1 subtype of store operated calcium channel and is mediated by protein kinase C. In contrast, in the absence of store operated calcium entry, thapsigargin inhibits transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.