Abstract

Regulation of Cl- and HCO3- secretion by intramural cholinergic neurons was investigated in guinea pig antrum in vitro. Sheet preparations composed of the mucosa and the submucosa were mounted between Ussing chambers and bathed with buffer-free solution on the luminal surface and with HCO3(-)-CO2 solution on the serosal side. Short-circuit current (Isc), unidirectional fluxes of 36Cl and 22Na, and the luminal alkalinization rate (JOHSL) were determined. Electrical stimulation of the preparations elicited increases in both JOHSL and Isc, which were inhibited by tetrodotoxin (TTX) and atropine. Physostigmine also evoked TTX- and atropine-sensitive increases in JOHSL and Isc. Similar increases in JOHSL and Isc were observed when the muscarinic agonist bethanechol chloride (BCh) was added to the serosal side. The responses to BCh were not affected by TTX. The BCh-induced increase in JOHSL was largely abolished by removal of HCO3- or Na+ and addition of ouabain (serosal side) but was neither sensitive to Cl- removal nor associated with 22Na secretion. The increase in Isc induced by BCh was associated with the increase in 36Cl secretion and was inhibited by removal of Cl- or Na+ and by addition of bumetanide or ouabain (both, serosal side). These results suggest that the submucosal cholinergic neurons are involved via muscarinic receptors in the stimulation of epithelial HCO3- and Cl- secretion. For both HCO3- and Cl-, the cellular and membrane mechanisms of secretion induced by muscarinic stimulation, although not entirely clear, appear to be different from those occurring under baseline conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.