Abstract

Milnacipran is a serotonin noradrenaline reuptake inhibitor (SNRI) and is used clinically as an antidepressant. We report here the effect of milnacipran on catecholamine synthesis in cultured bovine adrenal medullary cells. Incubation of adrenal medullary cells with milnacipran (300 ng/ml, 1,065 nM) for 20 min resulted in a significant increase in 14C-catecholamine synthesis from [14C]tyrosine, but not from [14C]DOPA, whereas the selective serotonin reuptake inhibitors (SSRIs), paroxetine (300 ng/ml, 800 nM) and fluvoxamine (300 ng/ml, 691 nM), had little effect. Milnacipran, but not paroxetine or fluvoxamine, increased the activity of tyrosine hydroxylase, the rate-limiting step of catecholamine biosynthesis, in a concentration-dependent manner (100-300 ng/ml, 355-1,065 nM). U0126 (1 microM), an inhibitor of p44/42 mitogen-activated protein kinase (MAPK) kinase, abolished the stimulatory effects of milnacipran on tyrosine hydroxylase activity. Furthermore, incubation of cells with milnacipran (30-100 ng/ml) for 5 min activated p44/42 MAPK, whereas paroxetine and fluvoxamine did not. The present findings suggest that milnacipran activates tyrosine hydroxylase and then stimulates catecholamine synthesis through a p44/42 MAPK-dependent pathway in cultured bovine adrenal medullary cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.