Abstract

Previous studies have shown a role of d-aspartic acid (d-Asp) in testicular steroidogenesis. Here, we evaluated the effects of d-Asp on androgen production and on expression levels of mRNAs encoding specific steroidogenic key molecules. d-Asp was endogenously present in adult rat testis and its content paralleled to serum luteinizing hormone (LH) and, local and circulating androstenedione and testosterone levels. In vivod-Asp administration induced serum LH release, causing an indirect increase of androstenedione and testosterone levels by enhancing steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) and 3β-hydroxysteroid dehydrogenase/D5-D4 isomerases (3β-HSD) mRNA levels. The direct endocrine role of d-Asp was evaluated using cultured immature Leydig cells (ILCs) obtained from 35days old rats. Cytoplasm and nucleus of ILCs localized d-Asp, while StAR marked the cytoplasm only. After 12h from d-Asp in vitro administration, ILCs resulted intensely d-Asp stained, and StaR protein level, evaluated by Western blotting, significantly increased. After 24h, significant androstenedione and testosterone syntheses were induced. At molecular level, d-Asp administration significantly increased StAR, P450scc and 3β-HSD mRNAs at 2, 4 and 12h, respectively. The temporal shift on relative mRNA expression levels indicated that d-Asp exerted its physiological role through sequential gene cascade activation of those molecules implicated in the synthesis of androgens. Conclusively, our findings demonstrated that d-Asp is a local messenger in testis and give a contribution in understanding the complexity of local endocrine regulation as well as the molecular events leading the acquisition to a steroidogenic competence by ILCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.