Abstract

The cholinergic nervous system controls inflammation by inhibiting the release of proinflammatory cytokines such as tumor necrosis factor (TNF) alpha from lipopolysaccharide (LPS)-stimulated macrophages. The key endogenous mediator of this so-called cholinergic anti-inflammatory pathway is acetylcholine, the principal neurotransmitter of the vagus nerve, which specifically interacts with alpha7 cholinergic receptors expressed by macrophages and other cell types to inhibit TNF-alpha production. We here investigated the capacity of the selective alpha7 cholinergic receptor agonist 3-(2,4-dimethoxybenzylidene) anabaseine (GTS-21) to inhibit LPS-induced inflammatory responses in mice in vivo. To this end, mice received an intraperitoneal injection of LPS (from Escherichia coli, 200 microg) preceded by GTS-21 (4 mg/kg) or vehicle. GTS-21 strongly inhibited LPS-induced TNF-alpha release into the peritoneal cavity and the circulation. In addition, GTS-21 attenuated the influx of neutrophils into peritoneal fluid upon administration of LPS. This inhibitory effect on neutrophil recruitment by GTS-21 was independent of its effect on TNF-alpha release, considering that etanercept, a potent TNF-alpha-blocking protein containing the extracellular domain of the p75 TNF-alpha receptor, did not influence LPS-induced neutrophil influx either in the presence or in the absence of GTS-21 treatment. GTS-21 did not reduce the local secretion of macrophage inflammatory protein 2 and keratinocyte-derived cytokine, suggesting that altered concentrations of these neutrophil-attracting chemokines did not contribute to GTS-21-induced inhibition of neutrophil migration. These data identify a novel anti-inflammatory effect of chemical alpha7 cholinergic receptor stimulation that is independent from its capacity to inhibit TNF-alpha production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.