Abstract

The effects of alpha- and beta-2-deoxy-D-glucose tetraacetate (1.7 and 8.5 mM) on insulin, somatostatin, and glucagon secretion from isolated rat pancreases perfused in the presence of 8.3 mM D-glucose were compared with those of unesterified 2-deoxy-D-glucose tested at the same two concentrations. The unesterified glucose analog caused, in a concentration-related manner, inhibition of glucose-induced insulin and somatostatin release and augmentation of glucagon secretion. The two anomers of 2-deoxy-D-glucose tetraacetate, however, increased the secretion rate of all three hormones; this effect was also related to the concentration of the esters. No obvious anomeric specificity of the secretory response to 2-deoxy-D-glucose tetraacetate was observed. These findings indicate that the insulinotropic action of hexose esters cannot be accounted for solely by the metabolic effect of their glucidic moieties. They suggest that the A, B, and D cells of the endocrine pancreas are each equipped with a receptor system responsible for the direct recognition of monosaccharide esters as secretagogues. They further support the view that a paracrine effect of insulin on glucagon-producing cells does not represent a major component in the regulation of their secretory activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call