Abstract

Abstract Unconventional reservoirs such as gas shales and tight gas sands require technology-based solutions for optimum development. The successful exploitation of these reservoirs has relied on some combination of horizontal drilling, multi-stage completions, innovative fracturing and fracture mapping to engineer economic completions. However, the requirements for economic production all hinge on the matrix permeability of these reservoirs, supplemented by the conductivity that can be generated in hydraulic fractures and network fracture systems. Simulations demonstrate that ultra-low shale permeabilities require an interconnected fracture network of moderate conductivity with a relatively small spacing between fractures to obtain reasonable recovery factors. Microseismic mapping demonstrates that such networks are achievable and the subsequent production from these reservoirs supports both the modelling and the mapping. Tight gas sands, having orders of magnitude greater permeability than the gas shales, may be successfully depleted without inducing complex fracture networks, but other issues of damage and zonal coverage complicate recovery in these reservoirs. As with the shales, mapping has proved itself to be valuable in assessing the fracturing results. Introduction Unconventional reservoirs provide a significant fraction of gas production in North America and increasing amounts in some other regions of the world. Such reservoirs include tight gas sands, coalbed methane (CBM), and gas shales; in 2006 these reservoirs provided 43% of the US production of natural gas [Kuuskraa(1)]. Because of their limited permeability, which is foremost among many other complexities, some type of stimulation process (and/or dewatering in the case of CBM) is required to engender economic recovery from wells drilled into these formations. The focus of this paper is on gas shales, with particular emphasis on how these reservoirs perform relative to tight gas sands. The important role of natural fractures in both the stimulation and production processes, the importance of conductivity in the developed fracture or fracture system, and the critical influence of the matrix permeability are investigated using both mapping and modeling results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.