Abstract

Imbalance in cytokine homeostasis plays an important part in the pathogenesis of chronic inflammatory diseases such as multiple sclerosis and rheumatoid arthritis. We demonstrated that T cells might exert a pathological effect through direct cellular contact with human monocytes/macrophages, inducing a massive up-regulation of the prototypical proinflammatory cytokines IL-1beta and TNF. This mechanism that might be implicated in chronic inflammation is specifically inhibited by high-density lipoproteins (HDL). Like many other stimuli, besides proinflammatory cytokines, the contact-mediated activation of monocytes induces the production of cytokine inhibitors such as the secreted form of the IL-1 receptor antagonist (sIL-1Ra). The present study demonstrates that stimulated T cells generate microparticles (MP) that induce the production of TNF, IL-1beta, and sIL-1Ra in human monocytes; the production of TNF and IL-1beta but not that of sIL-1Ra is inhibited in the presence of HDL. The results were similar when monocytes were stimulated by whole membranes of T cells or soluble extracts of the latter. This suggests that MP carry similar monocyte-activating factors to cells from which they originate. Thus, by releasing MP, T cells might convey surface molecules similar to those involved in the activation of monocytes by cellular contact. By extension, MP might affect the activity of cells, which are usually not in direct contact with T cells at the inflammatory site. Furthermore, this study demonstrates that HDL exert an anti-inflammatory effect in nonseptic activation of human monocytes, not only by inhibiting the production of IL-1beta and TNF but also, by leaving sIL-1Ra production unchanged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call