Abstract

Stimulated rotational Raman scattering (SRRS) is known to be one of the processes limiting the propagation of high-power laser beams in the atmosphere. In this paper, SRRS, Kerr nonlinearity effects, and group velocity dispersion of short laser pulses and pulse trains are analyzed and simulated. Fully time-dependent, three-dimensional, nonlinear propagation equations describing the Raman interaction, optical Kerr nonlinearity due to bound electrons, and group velocity dispersion are presented and discussed. The effective time-dependent nonlinear refractive index containing both Kerr and Raman processes is derived. Linear stability analysis is used to obtain growth rates and phase matching conditions for the SRRS, modulational, and filamentation instabilities. Numerical solutions of the propagation equations in three dimensions show the detailed evolution of the Raman scattering instability for various pulse formats. The dependence of the growth rate of SRRS on pulse duration is examined and under certain conditions it is shown that short (approximately psec) laser pulses are stable to the SRRS instability. The interaction of pulses in a train through the Raman polarization field is also illustrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call