Abstract

This paper presents an investigation of Stimulated Raman Scattering of gaussian laser beam in relativistic Plasma. The pump beam interacts with a pre-excited electron plasma wave and thereby generate a back-scattered wave. Due to intense laser beam, electron oscillatory velocity becomes comparable to the velocity of light, which modifies the background plasma density profile in a direction transverse to pump beam axis. The relativistic non-linearity due to increase in mass of the electrons effects the incident laser beam, electron plasma wave and back-scattered beam. We have set up the non-linear differential equations for the beam width parameters of the main beam, electron plasma wave, back-scattered wave and derived SRS back-reflectivity by taking full non-linear part of the dielectric constant of relativistic plasma with the help of moment theory approach. It is observed from the analysis that self-focusing of the pump beam greatly affects the SRS reflectivity, which plays a significant role in laser induced fusion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call