Abstract

Interaction of a high-intensity short laser pulse with near-critical plasmas allows us to achieve extremely high coupling efficiency and transfer laser energy to energetic ions. One-dimensional particle-in-cell simulations are considered to detail the processes involved in the energy transfer. A confrontation of the numerical results with the theory highlights a key role played by the process of stimulated Raman scattering in the relativistic regime. The interaction of a 1 ps laser pulse (I∼6×10^{18}Wcm^{-2} with an undercritical (0.5n_{c}) homogeneous plasma leads to a very high plasma absorption reaching 68% of the laser pulse energy. This permits a homogeneous electron heating all along the plasma and an efficient ion acceleration at the plasma edges and in cavities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call