Abstract

Stimulated low-frequency scattering of light by aqueous suspensions of the tobacco mosaic virus with the scattering frequency depending on the concentration of the virus is observed for the first time. For concentrations of ∼1 × 1012 and ∼2 × 1012 cm–3, the Stokes components of scattered light are shifted by ∼43.99 and ∼31.08 GHz, respectively. At the same time, the competing process of stimulated Brillouin scattering in these heterogeneous media is suppressed. The theory of stimulated emission resulting from normal-mode vibrations of solvent-molecule-loaded cylindrical nanoparticles driven by ponderomotive forces in the field of two copropagating pump electromagnetic waves is developed for the first time. The theoretically estimated frequency shift of the Stokes component is ∼50 GHz, which agrees with the experimental result. It remains unclear why a decrease in the thickness of the liquid layer with a simultaneous increase in concentration selectively favors a decrease in the frequency of coherent normal-mode vibrations of the virus participating in stimulated low-frequency scattering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.