Abstract
We report the results of an experimental study on stimulated and spontaneous emission from high-quality single-crystal GaN films grown on 6H-SiC and (0001) sapphire substrates in the temperature range of 300–700 K. We observed edge-emitted stimulated emission (SE) at temperatures as high as 700 K for samples grown on both SiC and sapphire substrates. The energy position of the SE and spontaneous emission peaks were shown to shift linearly to longer wavelengths with temperature and empirical expressions for the energy positions are given. We demonstrate that the energy separation between the spontaneous and SE peaks gradually increases from 90 meV at 300 K to 200 meV at 700 K indicating that an electron-hole plasma is responsible for the SE mechanism in this temperature range. The temperature sensitivity of the SE threshold for different samples was studied and the characteristic temperature was found to be 173 K in the temperature range of 300–700 K for one of the samples studied. We suggest that the unique properties of SE in GaN thin films at high temperatures could potentially be utilized in optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.