Abstract

New intraband semiconductor lasers—Wannier–Stark lasers—based on simple GaAs (150 A, quantum well)/GaAlAs (19 A with an aluminum fraction of 12%, barrier) superlattices have been demonstrated. The amplification mechanism in these lasers is based on population inversion between the ground Wannier–Stark level in the superlattice quantum wells and the weakly populated upper Wannier–Stark level in the wells two, three, or four periods down in the applied potential. Multiple regions of intense stimulated microwave emission near voltages of 8, 13, and 20 V (i.e., in the vicinity of resonances between these Wannier–Stark levels of the superlattice) have been discovered in the laser chips. The stimulated emission emerges in the circuit formed by the chip and its wiring. The emission from one of the chips at a temperature of up to 150 K (near 20 V applied to the chip) occurs at a frequency of about 7.3 GHz and has an estimated power of up to 1 W. It has been shown that the negative conductivity responsible for the emission still persists at 300 K but the emission is unseen owing to high losses in the circuit at this temperature. The superlattice wafer has been grown by metalorganic chemical vapor deposition. It consists of 1000 periods and a stop layer, to produce a metal–superlattice–metal terahertz resonator. Terahertz radiation has not been observed owing to a low amplification, as compared to losses in the resonator. According to the performed experiments, calculations, and discussions, such superlattices as radiation sources in gigahertz, terahertz, and higher frequency ranges could compete with quantum cascade lasers under appropriate optimization of their parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.