Abstract

The rate of absorption of energy from a weak signal field by an atom driven by a strong pump field is evaluated. The pump field and the signal field are assumed to induce transitions between the same pair of states, and their frequencies are both assumed to lie near the atomic resonance frequency for the transition in question. We find that the signal-field absorption line-shape function takes on negative values, representing stimulated emission rather than absorption, even though population inversion does not occur. This amplification of the signal field, which is most pronounced at high pump intensities, is shown to occur primarily at the expense of the pump field, which suffers an increased rate of attenuation. The results are discussed in the context of a theorem which expresses the absorption line-shape function for general atomic systems in terms of a suitable atomic correlation function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.