Abstract

A model for stimulated Brillouin (SBS) and Raman (SRS) backscattering of a spatially smoothed laser beam interacting with a collisional, inhomogeneous, expanding plasma is presented. It is based on the independent hot spots description [H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994)], in which the overall plasma reflectivity is assumed to be a sum of the individual speckle reflectivities. Self-focusing is taken into account in the computation of the speckle intensity profile and reflectivities. Two additions have been made to previous similar theories: (i) the thermal effects are retained along with the ponderomotive force for what concerns speckle self-focusing, and (ii) SRS (convective and absolute) is accounted for in calculations of the speckle reflectivity. The model is benchmarked against recent laser–plasma experiments at Laboratoire pour l’Utilisation des Lasers Intenses, at École Polytechnique, France, with well-characterized interaction conditions. A good agreement is found between the experimental SBS levels and the model calculations using the measured plasma parameters. This agreement applies for two types of beam smoothing techniques, random phase plates, and polarization smoothing, various plasma densities, and laser energies. Self-focusing itself, and thermal effects in it, play both a fundamental role in defining the level of plasma backscattering. The absolute Raman instability in speckles dominates the SRS response. The model predictions for the SRS reflectivity are less satisfactory, although they demonstrate the same trends as the experimental data. It follows from model calculations and experimental data that the polarization smoothing technique provides an efficient method of control of parametric instabilities allowing a reduction of several times in the level of SBS and SRS reflectivities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.