Abstract
Many neuroscience experiments rely on presenting stimuli and measuring participants' responses to these events. Often computer screens, speakers and keyboards are sufficient. However, these devices are not appropriate for some situations. For example, some studies present tactile or olfactory stimuli or brain stimulation. Likewise, keyboard buttons are not appropriate for use with vocal responses, small animals or individuals with motor impairments. We describe StimSync, which simulates USB keyboard inputs, allowing use with most experimental software. StimSync can measure button presses, optical signals from magnetic resonance imaging systems, changes in ambient light (e.g. synchronizing intracranial electrography), and auditory events (a voice key). In addition to the USB keyboard mode (necessarily millisecond precision), StimSync can also be set to provide higher precision timing. This feature can be used to validate timing, ensuring event synchronization (e.g. auditory events, visual events, brain stimulation). In addition to recording inputs, StimSync provides seven digital outputs for controlling external devices. Finally, StimSync can record analog inputs; we illustrate how this can be used to evaluate the rise time for computer displays. We observed outputs with a mean latency of 2.1ms (sd=0.17ms) and USB inputs with a mean latency of 2ms (sd=0.54ms). StimSync statistically outperforms two professional solutions and numerically outperforms other devices described in the literature. StimSync (http://www.mccauslandcenter.sc.edu/CRNL/tools/stimsync) provides an open-source solution for controlling and validating neuroscience experiments. In addition to sharing the design, we have produced a batch of devices to demonstrate the market for professional implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.