Abstract

Polyacetylenes (P1–P4) containing different stilbene groups, [(CHC) PhCHCHPhR]n(ROCmH2m+1 (m = 4 (P1), 10 (P2), 16 (P3)), or NO2 (P4)) were designed and synthesized, respectively, using [Rh(nbd)Cl]2 as a catalyst. Their structures and properties were characterized and evaluated by FTIR, 1H-NMR, 13C-NMR, GPC, and UV, PL, respectively. The optical limiting and nonlinear optical properties were investigated by using a frequency doubled, Q-switched, mode-locked Continuum ns/ps Nd:YAG laser system and their optical limiting mechanism was discussed. It is surprising to see that the stilbene pendants endow the polyacetylenes with a high thermal stability (Td ≥ 270 °C), novel optical limiting properties and large third-order nonlinear optical susceptibilities (up to 4.61 × 10−10 esu). The optical limiting mechanism is mainly originated from reverse saturable absorption of molecules. In addition, it is found that the polymer with electron accepted NO2 moiety exhibits better optical properties than that with electron donated alkoxy group because of larger π electron delocalization and dipolar effect. The strong interaction between stilbene pendants and the polyene main chain significantly results in red-shift of fluorescence emitting peak. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4529–4541, 2008

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call