Abstract
BackgroundHepatic cholesterol accumulation is a significant risk factor in the progression of nonalcoholic fatty liver disease (NAFLD) to steatohepatitis. However, the precise mechanism by which stigmasterol (STG) mitigates this process remains unclear. ObjectivesThis study aimed to investigate the potential mechanism underlying the protective effect of STG in mice with NAFLD progressing to steatohepatitis while being fed a high-fat and high-cholesterol (HFHC) diet. MethodsMale C57BL/6 mice were fed an HFHC diet for 16 wk to establish the NAFLD model. Subsequently, the mice received STG or a vehicle via oral gavage while continuing the HFHC diet for an additional 10 wk. The study evaluated hepatic lipid deposition and inflammation as well as the expression of key rate-limiting enzymes involved in the bile acid (BA) synthesis pathways. BAs in the colonic contents were quantified using ultra-performance liquid chromatography-tandem mass spectrometry. ResultsCompared with the vehicle control group, STG significantly reduced hepatic cholesterol accumulation (P < 0.01) and suppressed the gene expression of NLRP3 inflammasome and interleukin-18 (P < 0.05) in the livers of HFHC diet-fed mice. The total fecal BA content in the STG group was nearly double that of the vehicle control group. Additionally, the administration of STG increased the concentrations of representative hydrophilic BAs in the colonic contents (P < 0.05) along with the upregulation of gene and protein expression of CYP7B1 (P < 0.01). Furthermore, STG enhanced the α-diversity of the gut microbiota and partially reversed the alterations in the relative abundance of the gut microbiota induced by the HFHC diet. ConclusionsSTG mitigates steatohepatitis by enhancing the alternative pathway for BA synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.