Abstract

Plant morphogenesis is governed by the mechanics of the cell wall-a stiff and thin polymeric box that encloses the cells. The cell wall is a highly dynamic composite material. New cell walls are added during cell division. As the cells continue to grow, the properties of cell walls are modulated to undergo significant changes in shape and size without breakage. Spatial and temporal variations in cell wall mechanical properties have been observed. However, how they relate to cell division remains an outstanding question. Here, we combine time-lapse imaging with local mechanical measurements via atomic force microscopy to systematically map the cell wall's age and growth, with their stiffness. We make use of two systems, Marchantia polymorpha gemmae, and Arabidopsis thaliana leaves. We first characterize the growth and cell division of M. polymorpha gemmae. We then demonstrate that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower-growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves. We provide evidence that this different temporal behavior has a direct impact on the local cell geometry via changes in the junction angle. These results are expected to pave the way for developing more realistic plant morphogenetic models and to advance the study into the impact of cell division on tissue growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.