Abstract

Three methods for numerical transient analysis of Markov chains, the modified Jensen's method (Jensen's method with steady-state detection of the underlying DTMC and computation of Poisson probabilities using the method of Fox and Glynn [1]), a third-order L-stable implicit Runge-Kutta method, and a second-order L-stable method, TR-BDF2, are compared. These methods are evaluated on the basis of their performance (accuracy of the solution and computational cost) on stiff Markov chains. Steady-state detection in Jensen's method results in large savings of computation time for Markov chains when mission time extends beyond the steady-state point. For stiff models, computation of Poisson probabilities using traditional methods runs into underflow problems. Fox and Glynn's method for computing Poisson probabilities avoids underflow problems for all practical problems and yields highly accurate solutions. We conclude that for mildly stiff Markov chains, the modified Jensen's method is the method of choice. For stiff Markov chains, we recommend the use of the L-stable ODE methods. If low accuracy (upto eight decimal places) is acceptable, then TR-BDF2 method should be used. If higher accuracy is desired, then we recommend third-order implicit Runge-Kutta method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.