Abstract

SUMMARYForce control is important in robotics research for safe operation in the interaction between a manipulator and a human operator. The elasticity center is a very important characteristic for controlling the force of a manipulator, because a force acting at the elasticity center results in a pure displacement of the end-effector in the same direction as the force. Similarly, a torque acting at the elasticity center results in a pure rotation of the end-effector in the same direction as the torque. A stiffness synthesis strategy is proposed for a desired elasticity center for three-degree-of-freedom (DOF) planar parallel mechanisms (PPM) consisting of three revolute-prismatic-revolute (3RPR) links. Based on stiffness analysis, the elasticity center is derived to have a diagonal stiffness matrix in an arbitrary configuration. The stiffness synthesis is defined to determine the configuration when the elasticity center and the diagonal matrix are given. The seven nonlinear system equations are solved based on one reference input. The existence and the solvability of the nonlinear system equations were analyzed using reduced Gröbner bases. A numerical example is presented to validate the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.