Abstract

Stiffness reduction due to fatigue of a [0/(±45)2/0]T Glass/Polyester (GRP) laminate under combined cyclic stress is investigated in this experimental study. Stress states combining all three components of in-plane stress tensor are induced by uniaxially testing specimens cut off-axis at various angles from the principal material coordinate system. Modulus reduction is related to the various failure modes exhibited under different states of combined stress. It is verified that shear and transverse normal stress induce more severe stiffness degradation compared to stress states where normal stress in the main fibre direction is dominant. For every loading condition and stress state, it is observed in general that stiffness decrease is more pronounced under lower stress levels than these inducing low cycle fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.