Abstract

PurposeIn this paper, the main factors influencing the structure stiffness will be analyzed by studying the tangent stiffness matrix based on different requirement in engineering practice. The authors can obtain the deformation of three-bar tensegrity basic unit in different load, and gain the primary factor by comparing the deformation, which will provide reference to concrete structure design in the engineering.Design/methodology/approachThe mathematical model of tensegrity structure was built by establishing generalized node coordinates and connective matrix. Three main factors that affect the structure deformation can be obtained by analyzing the stiffness matrix, which is preload, Young's modulus, and cross-sectional area, the thinking of deformation also be sorted out. The deformation analysis of the concrete structure is carried out, and it is concluded that increasing the cross-sectional area can quickly improve the stiffness of the structure, which provides a reference for the structural variable stiffness design in practical engineering.Findings(1) When the axial external force is applied to the structure, the torsion-angle deformation of the structure is the largest, and the radial deformation of the structure is the smallest. (2) The structure stiffness can be rapidly enhanced by increasing the cross-sectional area. But the cross-sectional area can't be increased indefinitely. Because the mass will be increased once increasing the cross-sectional area, which will destroy the structure of the advantages of light weight in engineering practice.Originality/valueThe deformation analysis of the concrete structure is carried out, and it is concluded that increasing the cross-sectional area can quickly improve the stiffness of the structure, which provides a reference for the structural variable stiffness design in practical engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.