Abstract

Planar 2-degree-of-freedom (DOF) 3-differential Cable-Driven Parallel Robots (CDPRs) consist of a point-mass end-effector driven by a number of cables. Each cable is divided into four segments, three of them being connected to the point-mass end-effector by means of routing pulleys. This paper deals with the stiffness analysis of such planar 2-DOF 3-differential CDPRs. Based on the usual linear spring cable elongation model, the expression of the stiffness matrix is derived. The stiffness and workspace of several examples of planar 2-DOF 3-differential CDPRs are then compared. The results of these comparisons illustrate that the stiffness of planar CDPRs can be significantly improved by means of pulley differentials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call