Abstract

The stiffness of cable-based robots is studied in this paper. Since antagonistic forces are essential for the operation of cable-based manipulators, their effects on the stiffness should be considered in the design, control, and trajectory planning of these manipulators. This paper studies this issue and derives the conditions under which a cable-based manipulator may become unstable because of the antagonistic forces. For this purpose, a new approach is introduced to calculate the total stiffness matrix. This approach shows that, for a cable-based manipulator with all cables in tension, the root of instability is a rotational stiffness caused by the internal cable forces. A set of sufficient conditions are derived to ensure the manipulator is stabilizable meaning that it never becomes unstable upon increasing the antagonistic forces. Stabilizability of a planar cable-based manipulator is studied as an example to illustrate this approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call