Abstract

The stiffness of extracellular matrices (ECMs) is critical for cellular functions. Therefore, modulating the stiffness of ECMs in vitro is necessary to investigate the role of stiffness in cellular phenomena. Collagen gels are widely used for cell culture matrices in vitro. However, modulation of the stiffness in collagen gels for cell culture is challenging owing to the limited knowledge of the method to increase the stiffness while maintaining low cytotoxicity. Here, we established a novel method to modulate collagen gel stiffness from 0.0292 to 12.5 kPa with low cytotoxicity. We prepared collagens with genipin, a low-cytotoxic crosslinker of amines, at different concentrations and successfully modulated the stiffness of the gels. In addition, on 10 mM genipin-mixed collagen gels (approximately 12.5 kPa), H1299 human lung cancer cells showed spreading morphology and nuclear localization of yes-associated protein (YAP), typical phenomena of cells on stiff ECMs. Mouse mesenchymal stromal cells on 10 mM genipin-mixed collagen gels differentiated to vascular smooth muscle cells. On the other hand, the cells on 0 mM genipin-mixed collagen gels (approximately 0.0292 kPa) differentiated to visceral smooth muscle cells. Our new method provides a novel way to prepare stiffness-modulated collagen gels with low cytotoxicity in cell culture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.