Abstract
For stem cell differentiation, the microenvironment can play an important role, and hydrogels can provide a three-dimensional microenvironment to allow native cell growth in vitro. A challenge is that the stem cell's differentiation can be influenced by the matrix stiffness. We demonstrate a low-toxicity method to create different stiffness matrices, by using a photopolymerizable gelatin methacrylate (GelMA) hydrogel cross-linked by blue light (440nm). The stiffness and porosity of GelMA hydrogel is easily modified by altering its concentration. We used human bone marrow mesenchymal stem cells (MSCs) as a cell source and cultured the GelMA-encapsulated cells with EGM-2 medium to induce endothelial differentiation. In our GelMA blue light hydrogel system, we found that MSCs can be differentiated into both endothelial-like and osteogenic-like cells. The mRNA expressions of endothelial cell markers CD31, von Willebrand factor, vascular endothelial growth factor receptor-2, and CD34 were significantly increased in softer GelMA hydrogels (7.5% and 10%) compared with stiffer matrices (15% GelMA). On the other hand, the enhancements of osteogenic markers mRNA expressions (Alkaline phosphatase (ALP), Runx2, osteocalcin, and osteopontin) were highest in 10% GelMA. We also found that 10% GelMA hydrogel offered optimal conditions for MSCs to form capillary-like structures. These results suggest that the mechanical properties of the GelMA hydrogel can influence both endothelial and osteogenic differentiation of MSCs and sequent capillary-like formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Tissue Engineering and Regenerative Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.