Abstract

A great demand for wood material has led to an increase in the price of industrial wood in the past and will raise it even further in future. Industry and research have reacted to this increasing price of wood, for example, by developing weight-reduced particleboard. One approach to achieve this reduction in weight is to use suitable chip geometries in the core layer instead of lightweight, resource-saving filling materials. The geometry of the chips in the core layer must have a high compression resistance here to reach the desired apparent density profile. For this purpose, particle geometries were analysed with regard to this property within a project for the development of weight-reduced particleboards. After determining the curve of the compression resistance, it was possible to establish an equivalent spring stiffness model for different chip geometries to characterise the geometry during compression. Merely due to a low bulk density for chips in the core layer, it is not possible to increase the spring stiffness and hence to reach a required apparent density profile. Only compression of the chips leads to a rapid increase in spring stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.