Abstract

A method of analysis of the global behavior of long curved or straight single-cell girders with or without initial stress is presented. It is based on thin-wall beam elements that include the modes of longitudinal warping and of transverse distortion of cross section. Deformations due to shear forces and transverse bimoment are included, and it is found that the well-known spurious shear stiffness in very slender beams is eliminated by virtue of the fact that the interpolation polynomials for transverse displacements and for longitudinal displacements (due to rotations and warping) are linear and quadratic, respectively, and an interior mode is used. The element is treated as a mapped image of one parent unit element and the stiffness matrix is in integration in three dimensions, which is numerical in general, but could be carried out explicitly in special cases. Numerical examples of deformation of horizontally curved bridge girders, and of lateral buckling of box arches, as well as straight girders, validate the formulation and indicate good agreement with solutions by other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.