Abstract
BackgroundHydrogels with tuneable mechanical properties are an attractive material platform for 3D bioprinting. Thus far, numerous studies have confirmed that the biophysical cues of hydrogels, such as stiffness, are known to have a profound impact on mesenchymal stem cell (MSC) differentiation; however, their differentiation potential within 3D-bioprinted hydrogels is not completely understood. Here, we propose a protocol for the exploration of how the stiffness of alginate–gelatin (Alg-Gel) composite hydrogels (the widely used bioink) affects the differentiation of MSCs in the presence or absence of differentiation inducing factors.MethodsTwo types of Alg-Gel composite hydrogels (Young’s modulus: 50 kPa vs. 225 kPa) were bioprinted independently of porosity. Then, stiffness-induced biases towards adipogenic and osteogenic differentiation of the embedded MSCs were analysed by co-staining with alkaline phosphatase (ALP) and oil red O. The expression of specific markers at the gene level was detected after a 3-day culture.ResultsConfocal microscopy indicated that all tested hydrogels supported MSC growth and viability during the culture period. Higher expression of adipogenic and osteogenic markers (ALP and lipoprotein lipase (LPL)) in stiffer 3D-bioprinted matrices demonstrated a more significant response of MSCs to stiffer hydrogels with respect to differentiation, which was more robust in differentiation-inducing medium. However, the LPL expression in stiffer 3D-bioprinted constructs was reduced at day 3 regardless of the presence of differentiation-inducing factors. Although MSCs embedded in softer hydrogels to some extent proceeded toward adipogenic and osteogenic lineages within a few days, their differentiation seemed to be slower and more limited. Interestingly, the hydrogel itself (without differentiation-inducing factors) exhibited a slight effect on whether MSCs differentiated towards an adipogenic or an osteogenic fate. Considering that the mechano-regulated protein Yes-associated protein (YAP) is involved in MSC fate decisions, we further found that inhibition of YAP significantly downregulated the expression of ALP and LPL in MSCs in stiffer constructs regardless of the induced growth factors present.ConclusionsThese results demonstrate that the differentiation of MSCs in 3D-bioprinted matrices is dependent on hydrogel stiffness, which emphasizes the importance of biophysical cues as a determinant of cellular behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.