Abstract

The ability to distinguish object stiffness is a very important aspect in object handling, but completely lacking in current myoelectric prostheses. In human hands both tactile and proprioceptive sensory information are required for stiffness determination. Therefore, it was investigated whether it is possible to distinguish object stiffness with vibrotactile feedback of hand opening and grasping force. Three configurations consisting of an array of coin motors and a single miniature vibrotactile transducer were investigated. Ten healthy subjects and seven subjects with upper limb loss due to amputation or congenital defects performed virtual grasping tasks, in which they controlled hand opening and grasping force. They were asked to determine the stiffness of a grasped virtual object from four options. With hand opening feedback alone or in combination with grasping force feedback, correct stiffness determination was achieved in around 60% of the cases and significantly higher than the 25% achieved without feedback or grasping force feedback alone. Despite the equal performance results, the combination of hand opening and grasping force feedback was preferred by the subjects over the hand opening feedback alone. No differences between feedback configurations and between subjects with upper limb loss and healthy subjects were found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call