Abstract

This paper introduces a novel approach for designing the stiffener layout inside large machine tools by applying the self-optimal growth principle of plant ramifications in nature. Firstly, numerical studies are carried out in order to confirm the potential of leaf venation as concept generators for creating the optimal load-bearing topology for stiffened machine tool structures. Then, a mathematical model explaining the optimality of plant morphogenesis is presented. Based on this, an evolutionary algorithm is developed, which uses three growth strategies to determine the candidate stiffeners to grow or atrophy with respect to the loads applied. The proposed growth-based method could generate a distinct stiffener layout, which is different to those produced by the conventional topology optimization methods, and thus offers unique possibilities of improving the design efficiency and commonality for machine tool development. The suggested approach is finally applied to the re-design of an actual grinding machine column, on which the numerical analyses and experimental tests conducted exemplify the performance enhancement, and therefore is a good choice for the stiffener layout design of machine tool structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.